2,049 research outputs found

    Assessing Rigid and Non-Rigid Spatial Thinking

    Get PDF

    Ethyl 4-(2,4-dichloro­phen­yl)-6-(6-meth­oxy-2-naphth­yl)-2-oxocyclo­hex-3-ene-1-carboxyl­ate

    Get PDF
    In the title compound, C26H22Cl2O4, the cyclo­hexenone ring adopts an approximate half-chair conformation, with two C atoms displaced by −0.485 (6) and 0.218 (6) Å from the plane of the other four ring atoms. The dihedral angles between its four almost coplanar [maximum deviation = 0.006 (2) Å] atoms and the benzene and naphthalene ring systems are 59.26 (13) and 79.94 (9)°, respectively. The dihedral angle between the aromatic rings systems is 77.14 (7)°. A short intra­molecular C—H⋯Cl contact generates an S(6) ring. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯Cl inter­actions to generate a three-dimensional network

    Designer requirements for visual capability loss simulator tools: Differences between design disciplines

    Get PDF
    There is a low uptake of inclusive design tools in industry, partly due to a poor fit between design tools and the thought and work processes of designers. Simulating visual capability losses is a technique with great potential in helping designers improve inclusivity and accessibility. However, we need to understand the needs of designers from different disciplines to improve the fit of these tools and their uptake in industry. This study aims to determine designers’ needs for vision loss simulators, and how this varies between disciplines. Interviews were carried out with 15 designers from five disciplines. The results suggest that one tool is not suitable for all. The graphic and web designers interviewed required a tool to aid communication with clients, hoever, the industrial and engineering designers required two tools, depending on the stage of the design process. To increase their uptake, simulator tools should be used in education.We would like to thank the EPSRC for funding this work, and Wolfson College Cambridge for their support.This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/978-3-319-07437-5_

    (E)-1-(2,5-Dichloro-3-thien­yl)-3-(3,4-dimeth­oxy­phen­yl)prop-2-en-1-one

    Get PDF
    In the title compound, C15H12Cl2O3S, the prop-2-en-1-one (enone) fragment is almost planar [C—C—C—O = 2.2 (4)°] and it subtends dihedral angles of 11.9 (2) and 11.0 (2)° with the thio­phene and benzene rings, respectively. The dihedral angle between the aromatic rings is 3.47 (16)°. In the crystal, weak C—H⋯O and C—H⋯Cl inter­actions link the mol­ecules, leading to R 2 2(14), R 2 2(24) and C(11) supra­molecular motifs occurring within the three-dimensional network. Weak aromatic π–π stacking [centroid–centroid separations = 3.6823 (15) and 3.8722 (15) Å] may also help to consolidate the packing

    (2E)-1-(3-Bromo­phen­yl)-3-(6-meth­oxy-2-naphth­yl)prop-2-en-1-one

    Get PDF
    In the title compound, C20H15BrO2, the prop-2-en-1-one fragment is substanti­ally twisted [C—C—C—O = 23.0 (11)°]. The dihedral angle between the benzene and naphthalene rings is 44.28 (13)°. The only possible directional inter­actions in the crystal are weak C—H⋯π contacts, which generate (001) sheets

    3,5-Bis(4-fluoro­phen­yl)-4,5-dihydro-1H-pyrazole-1-carbaldehyde

    Get PDF
    In the title mol­ecule, C16H12F2N2O, the pyrazole ring adopts a slight envelope conformation with the methyl­ene C atom deviating by 0.114 (3) Å from the mean plane of the other four atoms [maximum deviation = 0.021 (3) Å]. The dihedral angles between the four essentially planar atoms of the pyrazole ring and the fluoro-substituted benzene rings are 2.6 (2) and 82.2 (2)°. The dihedral angle between the two benzene rings is 83.7 (2)°. The crystal packing is stabilized by weak inter­molecular C—H⋯O hydrogen bonds

    Limits on WWgamma and WWZ Couplings from W Boson Pair Production

    Get PDF
    The results of a search for W boson pair production in pbar-p collisions at sqrt{s}=1.8 TeV with subsequent decay to emu, ee, and mumu channels are presented. Five candidate events are observed with an expected background of 3.1+-0.4 events for an integrated luminosity of approximately 97 pb^{-1}. Limits on the anomalous couplings are obtained from a maximum likelihood fit of the E_T spectra of the leptons in the candidate events. Assuming identical WWgamma and WWZ couplings, the 95 % C.L. limits are -0.62<Delta_kappa<0.77 (lambda = 0) and -0.53<lambda<0.56 (Delta_kappa = 0) for a form factor scale Lambda = 1.5 TeV.Comment: 10 pages, 1 figure, submitted to Physical Review

    Study of Zγ events and limits on anomalous ZZγ and Zγγ couplings in pp̄ collisions at s=1.96TeV

    Get PDF
    We present a measurement of the Zγ production cross section and limits on anomalous ZZγ and Zγγ couplings for form-factor scales of Λ=750 and 1000 GeV. The measurement is based on 138 (152) candidates in the eeγ (μμγ) final state using 320(290)pb-1 of pp̄ collisions at s=1.96TeV. The 95% C.L. limits on real and imaginary parts of individual anomalous couplings are |h10,30Z|<0.23, |h20,40Z|<0.020, |h10,30γ|<0.23, and |h20,40γ|<0.019 for Λ=1000GeV. © 2005 The American Physical Society

    A Quasi-Model-Independent Search for New Physics at Large Transverse Momentum

    Get PDF
    We apply a quasi-model-independent strategy ("Sleuth") to search for new high p_T physics in approximately 100 pb^-1 of ppbar collisions at sqrt(s) = 1.8 TeV collected by the DZero experiment during 1992-1996 at the Fermilab Tevatron. Over thirty-two e mu X, W+jets-like, Z+jets-like, and 3(lepton/photon)X exclusive final states are systematically analyzed for hints of physics beyond the standard model. Simultaneous sensitivity to a variety of models predicting new phenomena at the electroweak scale is demonstrated by testing the method on a particular signature in each set of final states. No evidence of new high p_T physics is observed in the course of this search, and we find that 89% of an ensemble of hypothetical similar experimental runs would have produced a final state with a candidate signal more interesting than the most interesting observed in these data.Comment: 28 pages, 17 figures. Submitted to Physical Review
    corecore